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An introduction to mathematical models of pattern formation by morphogen
gradients is presented, using the early embryo of the fruit fly Drosophila as the
main experimental example. Analysis of morphogen gradient formation is based
on the source–diffusion–degradation models and a formalism of local accumulation
times. Transcriptional control by morphogens is discussed within the framework
of thermodynamic site occupancy models of gene regulatory regions. © 2012 Wiley
Periodicals, Inc.
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INTRODUCTION

Mechanisms of developmental pattern formation
can be assigned to two broad classes,

inductive and self-organized. In inductive mechanisms,
the emergence of pattern formation depends on
nonuniformities established during previous stages of
development. In self-organized mechanisms, patterns
emerge through spontaneous symmetry breaking, in
a way that is largely independent of preexisting
asymmetries. Molecular studies of development have
provided examples of both inductive and self-
organized mechanisms. For instance, the overall plan
of our hand depends on an intricate cascade of
inductive events. At the same time, the quasiperiodic
array of the hair follicles on the dorsal side of the
hand is likely to be generated by a mechanism that is
self-organized.

In this review, we focus on a specific class
of inductive pattern formation mechanisms, which
depend on morphogen gradients, defined as the
concentration fields of chemicals that act as dose-
dependent regulators of cell signaling and gene
expression.1–4 The term morphogen was introduced
in a 1952 paper by Alan Turing to describe chemical
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substances that ‘persuade’ cells to acquire a specific
identity.5 The molecular identities of morphogens
remained a mystery until the late 1980s, when the first
morphogens were identified by in the early Drosophila
embryo,6–11 an experimental system that has a sim-
ple anatomy and can be studied by powerful genetic
techniques.

During the first two hours of Drosophila
development, a spatially uniform arrangement of
identical cells is patterned by graded distributions
of transcription factors, which play a key role in
establishing the body plan of the adult fly (Figure 1).
The anterior–posterior concentration gradient of
Bicoid (Bcd), a transcriptional activator, is essential
for specifying the anterior segments of the body.12

The ventral-to-dorsal nuclear localization gradient of
Dorsal (Dl), a transcription factor that can act both
as an activator and as a repressor, specifies the spatial
arrangement of the muscle, nerve, and skin tissues.13

Graded distribution of a transcriptional repressor
Capicua (Cic), with minima at both the anterior
and posterior poles, is important for specifying
the terminal structures of the embryo.14 Graded
distributions of Bcd, Cic, and nuclear Dl provide
inputs to the regulatory regions of genes involved in
multiple aspects of embryogenesis (Figures 2 and 3).

Each of these gradients arises from asymmetries
in the unfertilized egg. The origin of the Bcd
gradient can be traced to the localized spatial
pattern of bcd mRNA, which is established during
oogenesis. Following egg fertilization, the bcd mRNA
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FIGURE 1 | Graded distributions of transcription factors in the early Drosophila embryo. (a) Spatially uniform arrangement of nuclei in a fixed
embryo, ∼2 h after fertilization. No morphological asymmetries are apparent at this point of development. Nuclei are visualized by DAPI staining.
(b) Adult Drosophila, about to take off. Schematic on the right provides the orientation of the anteroposterior (AP) and dorsoventral (DV) body axes.
(c) Concentration gradient of Bicoid (Bcd), a transcription factor that organizes anterior development of the embryo. The Bcd distribution is visualized
by antibody staining in a fixed embryo. (d) Fluorescence intensity profile of the signal from an embryo stained with a-Bcd antibody. (e) Nuclear
localization gradient of Dorsal (Dl), a transcription factor that organizes DV patterning of the embryo. In this image, the nuclear distribution of Dl is
visualized in a vertically oriented embryo. (f) Quantified fluorescence intensity of nuclear Dl, based on a-Dl antibody staining. (g) Fixed embryo
stained with an antibody that recognizes Capicua (Cic), a transcriptional repressor downregulated at the terminal regions of the embryo. (h) The
graded pattern of Cic concentration has minima at both anterior and posterior poles.

is translated into a protein that generates a long-
range concentration profile. The gradients that
control dorsoventral (DV) and terminal patterning
arise through a different mechanism, which involves
localized activation of receptors on the surface of the
embryo. In both cases, the spatially uniform receptors
are activated by ligands generated in a spatial pattern
that is also predefined during egg development. Thus,
early development of the Drosophila embryo provides
a clear example of multiple concurrent inductive
events.

Studies of pattern formation in the early
Drosophila embryo provide insights into general
principles of inductive patterning mechanisms. For
example, some aspects of pattern formation by the Dl
gradient are essentially identical to those discovered
during pattern formation in the vertebrate neural
tube.15,16 Over the past decade, analyses of pattern
formation in the Drosophila embryo and other

systems that depend on morphogens have begun to
undergo a transformation to a stage in which inductive
signals and their effects are studied at a quantitative
level.17–29 The results of these studies enable the
formulation of mathematical models that can be used
to organize existing results and lead to a deeper
understanding of pattern formation mechanisms.30–40

Our review provides an introduction to the
basic mathematical models of gradient formation
and interpretation, using the Drosophila embryo as
the main example. When studying these models, the
reader should keep in mind a quote from Turing5:
‘. . .a mathematical model of the growing embryo will
be described. This model will be a simplification and
an idealization, and consequently a falsification. It is
to be hoped that the features retained for discussion
are those of greatest importance in the present state of
knowledge.’ Over the five decades since these words
were written, the state of knowledge has changed
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FIGURE 2 | Fluorescent in situ hybridization images showing the expression patterns of some of the genes regulated by Bicoid (Bcd), Capicua
(Cic) and Dorsal (Dl). (a) Expression domains of Bcd and Cic targets along the anteroposterior (AP) axis of the embryo. Note that hunchback (hb;
yellow), Krüppel (Kr; green), knirps (kni; red), giant (gt ; blue), tailless (tll; magenta) and huckebein (hkb; orange) are expressed in distinct domains
along the AP axis. In anterior region of the embryo, the expression domains of these genes dependend on the activating functions of the Bcd gradient
and the repressive functions of Cic. Anterior: left. (b) Expression domains of Dl targets. snail (sna; blue) is only detected in the ventral regions of the
embryo, while rhomboid (rho; green) and short gastrulation (sog; yellow) are expressed in more lateral domains and zerknüllt (zen; red) is confined
to the dorsal region. Shown are sections through the embryo, ventral: bottom, dorsal: top.

dramatically. With this has come a change in the
status of mathematical models, which can be tested
now using an ever increasing number of experimental
techniques. However, striking a balance between the
realism of mathematical models and their practical
value remains an art. As a rule, it is best to start
with the simplest possible model, which captures the
essence of observed patterns and can be used to do a
back-of-the-envelope calculation. This is the approach
we take in our review, which is addressed to students
of developmental and quantitative biology.

FORMATION OF MORPHOGEN
GRADIENTS

One of the simplest mechanisms for morphogen gra-
dient formation relies on the diffusion and degra-
dation of locally produced chemical signals.4,41,42

This mechanism can operate in both intracellular
and extracellular compartments, establishing chem-
ical gradients with characteristic length scales ranging
from microns to millimetres. Importantly, each of the
three ingredients of this mechanism can be realized in
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FIGURE 3 | Fragments of regulatory networks that convert maternal
morphogen gradients into patterns of zygotic gene expression.
(a) Anterior expression pattern of tailless (tll) depends on its direct
activation by Bicoid (Bcd) and repression by Capicua (Cic). (b) Dorsal
(Dl) expression of zerknüllt (zen) is generated by a combination of
graded Dl, which acts a direct repressor, and spatially uniform Zelda
(Zld), an early activator of zygotic transcription. Dl-dependent
repression of zen also depends on Cic (not shown). (c) Lateral stripes of
rhomboid (rho) expression along the dorsoventral axis of the embryo
are generated by a network that combines a coherent feedforward loop,
an incoherent feedforward loop, and a positive feedback autoregulation
motif. Dl regulates rho both directly and through Twist (twi, an
activator) and Snail (sna, a repressor). In addition to sna and rho, Twi
also regulates its own expression.

multiple ways. Signal production can be mediated by
localized protein synthesis, secretion, or phosphory-
lation. Degradation can be realized by proteolysis or
receptor-mediated endocytosis. Diffusion can result
from any form of nondirected transport, such as
molecular diffusion or repeated rounds of ligand inter-
nalization and recycling.

In most examined experimental systems to date,
the basic gradient mechanism is augmented by mul-
tiple additional effects, such as directed transport
or complex chemical interactions. However, a rela-
tively simple class of linear reaction–diffusion models
frequently provides a very insightful first step in
the analysis of biological systems. Below we review
two essential characteristics of gradient formation
predicted by these models and illustrate how they
can be used to address some of the key questions
arising in studies of morphogen gradients. First, it is
important to determine what controls the length scale

of the gradient. Second, it is important to establish
whether gradients reach steady states on time scales
relevant for developmental patterning. Given a mathe-
matical model of gradient formation, answers to these
questions can be obtained by evaluating an analyti-
cal expression for a quantity that we call the local
accumulation time, defined below.

Steady State Gradient and Definition
of Local Accumulation Time
Much model-based analysis of morphogen gradients
requires access to time-dependent solutions of the
underlying model equations. For most existing
models, time-dependent solutions can be obtained
only numerically. However, given the high uncertainty
in model parameters, detailed numerical solutions
are not always useful. Instead, it is more practical
to have simple analytical expressions that depend
explicitly on model parameters (to analyze the effects
of their variations) and can be used for back-of-the-
envelope calculations. We now outline the approach
that leads to such analytical expressions based on
the steady state solution of the model, and give a
definition for the local accumulation time, the latter of
which provides a compact summary of concentration
dynamics at a given position within the patterned
field. The approach we present can be readily applied
to mathematical models that describe different forms
of signal release, tissues of different sizes, and cascades
of reaction–diffusion processes.43–45

We focus our discussion on models formulated
in one spatial dimension and assume that signal
production starts at time zero, when morphogen con-
centration is zero throughout the system (Figure 4). At
long times, the time-dependent concentration profile
approaches a steady state that is determined by the
balance of localized synthesis, diffusion, and degrada-
tion. The steady state concentration field is denoted
by Cs(x), where x is the spatial coordinate within the
tissue. In the rest of this presentation, we will assume
that, for all points within the patterned domain, the
morphogen concentration approaches its steady state
monotonically, i.e., without overshoots. These cases
are clearly important, but we will neglect them for
now.

Cells (or nuclei) at different positions within
the tissue will reach their approximate steady state
concentrations on different time scales, which depend
on the parameters of the problem and on the distance
from the morphogen source (Figure 4(c)). As a first
step in dealing with these dynamics, let us consider
the following function, which can be interpreted as
the fractional deviation of the concentration from its
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FIGURE 4 | Local accumulation time. (a) Schematic of morphogen gradient formation by synthesis, diffusion, and spatially uniform degradation.
The source of morphogen production is distributed exponentially. (b) Concentration profile at four different times: t = 1/2k , 1/k , 2/k , ∞. The
concentration profile has been plotted for λs = 0, and scaled by the maximal concentration at x = 0, Cs (0) = Q/

√
Dk . The spatial coordinate has

been rescaled by the dynamic length scale, λ =
√

D/k . (c) Concentration dynamics at x = λ/2 and x = 2λ. (d) Local kinetics of the fractional
deviation from the steady state concentration, plotted at two different positions, x = λ/2 and x = 2λ.

steady value at a given time (Figure 4(d)):

F(x, t) = 1 − C(x, t)
Cs(x)

.

Clearly, 1 − F(x, t) = C(x, t)/Cs(x) is the frac-
tion of the steady state concentration that has been
accumulated at position x by time t. Furthermore, the
fraction of the steady state value accumulated between
times t and t + dt is equal to F(x, t) − F(x, t + dt). As
the difference between these two times tends to zero,
F(x, t) − F(x, t + dt) can be approximated by a time
derivative:

F(x, t) − F(x, t + dt) ≈ −∂F(x, t)
∂t

dt.

Hence, −
[

∂F(x,t)
∂t

]
dt can be interpreted as the

fraction of the steady state concentration accumulated
between times t and t + dt. We can use this to define
the local accumulation time, τ (x), as the mean time
needed to form a steady gradient at a given point
in space. In this definition, we add the contributions
of all time intervals from zero to infinity, weighed
by the corresponding fraction of the steady state
concentration that has been accumulated during this

interval. The result is the following integral43:

τ (x) =
∞∫

0

t
[
−∂F(x, t)

∂t

]
dt.

Importantly, this integral can be evaluated with-
out knowledge of the time-dependent concentration
profile. Details of relevant computations are described
in recent papers, which provide expressions for τ (x)
for several canonical versions of the source–diffu-
sion–degradation (SDD) model.43–45

Possible configurations of a regulatory region
with two binding sites for activator A (oval) and
B (pentagon).

Using the Local Accumulation Time
to Analyze Gradient Dynamics
Calculation of τ (x) can be used to decide whether
the gradient reaches a steady state on a time scale
relevant for developmental patterning. To do this,
τ (x) must be compared to the time allotted for a
specific developmental event. We denote this time by
Tdev. For instance, the time by which the Bcd gradient
must be established, in order to perform its patterning
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function, is less than 90 minutes, from the onset of
Bcd synthesis to cellularization.46

When τ (x) is significantly less than Tdev for all
x (as a rule of thumb, one can use τ (x) < Tdev/3),
the tissue is patterned by a steady state gradient. The
length scale of this gradient can be extracted from
the steady state concentration profile, given by Cs(x).
On the other hand, when τ (x) is not very different
from Tdev or exceeds it, the tissue is patterned by a
time-dependent signal.

The length scale of the gradient at a given time
can be extracted from an approximate time-dependent
solution, which can be constructed based only on
the steady profile and the local relaxation time. To
construct this approximation, the approach to steady
state at a given point is approximated by a single
exponential, with the decay time equal to τ (x):

Capprox(x, t) = Cs(x) × (1 − exp(−t/τ (x))).

Clearly, the exact and approximate solutions
match both when t = 0 and when t = ∞. The
approximation also works quite well at intermediate
times that are not much smaller than τ (x).43

Importantly, this approximation allows us to get
around the problem of finding the exact expression
for the time-dependent solution. Up until this point,
we have not specified the model or its parameters. We
do this in the next section, for a commonly used and
experimentally validated model of the Bcd gradient.
First, we provide the analytical expressions for Cs(x)
and τ (x) and then supplement these expressions with
numerical estimates of model parameters.

Steady State and Local Accumulation Time
in a Model of the Bcd Gradient
Existing models of Bcd gradient formation have
different levels of complexity.47 All of them account
for the localized synthesis of Bcd protein in the
anterior region of the embryo, together with diffusion,
and degradation. A commonly used model takes the
form of the following reaction–diffusion problem
(a recent review provides a good introduction to
reaction–diffusion models4):

∂C(x, t)
∂t

= D
∂2C(x, t)

∂x2 − kC(x, t) + Q(x)

D
∂C(0, t)

∂x
= 0, D

∂C(L, t)
∂x

= 0

C(x, 0) = 0.

C(x, t) represents the time-dependent concentra-
tion of Bcd protein, t is the time from the onset of

Bcd synthesis; 0 < x < L is the distance from the ante-
rior pole of the embryo with the size of the embryo
denoted by L. The first of these equations accounts
for the rate of change of Bcd concentration over time,
with contributions from diffusion of the Bcd pro-
tein, first order degradation, and spatially distributed
synthesis. The spatial distribution of Bcd synthesis
is approximated by a decaying exponential function:
Q(x) = (Q0/λs) exp(−x/λs), which represents the gra-
dient of bcd mRNA.46 The second and third equations
are the no-flux boundary conditions, reflecting the fact
that the Bcd protein cannot leave the embryo. The last
equation states that the protein concentration at t = 0
is equal to zero.

This model has only a handful of parameters:
the size of the system (L), the signal diffusivity and the
degradation rate constant (D and k, respectively), and
two parameters that characterize the pattern of signal
production (Q0 and λs). The experimentally observed
gradient decays to zero before the posterior pole17

(x = L), which implies that the model operates in a
regime where the solution is independent of the size
of the system. This reduces the number of parameters
to only four. Furthermore, when Bcd synthesis is
localized right at the anterior pole (corresponding to
λs ≈ 0, an assumption that will be relaxed in the
next section), the steady is given by a single decaying
exponential:

Cs(x) = Q0

Dλ
exp(−x/λ)

where λ =
√

D/k is the dynamic length scale, and can
be interpreted as the average distance to which the
signal molecule diffuses before it is degraded.

One can show that local accumulation time is a
linear function position43:

τ (x) = 1
2k

(
1 + x

λ

)
.

Unlike the steady state profile, the local
accumulation time does not depend on the strength of
the source of morphogen production. This is always
true for linear degradation models.

Combining Analytical Results with
Numerical Estimates of Model Parameters
In order to investigate the implications of our
calculations upon the Bcd gradient, we will now
combine the expressions for the steady state profile
and local accumulation time with numerical values
of Bcd diffusivity, lifetime, and the spatial pattern
of synthesis. We will use D ≈ 4 μm2/s, an estimate
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based on a combination of fluorescence recovery after
photobleaching (FRAP) and fluorescence correlation
spectroscopy (FCS) studies with a eGFP-tagged Bcd
protein.18 The lifetime of the Bcd protein, equal to
1/k for the first order degradation kinetics assumed
here, is ≈50 minutes, based on optical pulse–chase
experiments with a photoswitchable version of the
fluorescently tagged Bcd protein.48

With these choices of D and k, we get λ ≈
110 μm, which leads to the spatial profile of τ (x)
shown in Figure 5(a). The minimal value of τ (x)
is 33 minutes, reached at x = 0 (the ‘anterior pole
of the embryo’). The most distant gene known to
be directly controlled by Bcd is located two thirds
along the embryo, at x ≈ 375 μm.12 At this location,
τ (x) = 110 minutes. Comparing these numbers to 90
minutes, the upper limit of the time of the Bcd gradient
formation, we see that, for a significant fraction of the
anteroposterior (AP) axis, concentrations do not reach
their steady values. In this regime, the spatial profile of
Bcd can be estimated using the analytical expression
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FIGURE 5 | Dynamics in the model of Bicoid (Bcd) gradient
formation. (a) Local accumulation time as a function of position,
calculated for D = 4 μm2/s, 1/k = 50 min, λs = 0 μm (black) and
λs = 50 μm (red). (b) Morphogen concentration profiles, evaluated at
30 min, 60 min, and at steady state, based on exact and approximate
solutions (black and red curves, respectively).

for Capprox(x, t), and it is remarkably close to the exact
profile,C(x, t) (Figure 5(b)).

We now ask what happens when the spatial
pattern of Bcd synthesis is itself distributed in a gra-
dient, as suggested by the quantitative analysis of
bcd mRNA? In this case (where λs > 0), an expres-
sion for the local accumulation time can also be
derived:

τ (x) = 1
2k

[(
1 + x

λ

) λ exp(−x/λ)
λ exp(−x/λ) − λs exp(−x/λs)

+ 2λ2
s

λ2
s − λ2

]
.

To evaluate this expression, we need λs, a
measure of the spatial extent of signal production.
Direct measurements of the spatial pattern of Bcd
protein synthesis are not available. As a proxy for this
pattern, we can use the results of fluorescence in situ
hybridization (FISH) experiments that measured the
distribution of bcd mRNA.46 Quantitative analysis
bcd FISH data reveals that 90% of bcd RNA particles
are located in the anterior tenth of the embryo. Based
on these measurements, λs ≈ 50 μm. Combining this
number with the previous estimates of λ = 110 μm
and 1/k = 50 minutes, we get the red curve in
Figure 5(a). We see that the effect of varying λs is
quite modest. We stress that these conclusions are
based on parameters that have been estimated very
recently and are yet to be confirmed by independent
measurements and experimental techniques.

Signal Transduction
Formation of the morphogen gradients that con-
trol DV and terminal patterning of the Drosophila
embryo is considerably more complex than formation
of the Bcd gradient. In both of these systems, pattern
formation is initiated by locally produced extracellu-
lar ligands that activate uniformly expressed plasma
membrane receptors. The ligand-bound receptor trig-
gers a signal transduction cascade that changes the
abundance, phosphorylation state, or nuclear local-
ization of a transcription factor, which thereby acts
as a spatial regulator of gene expression. Thus, pat-
tern formation is based on the localized activation of
receptor-dependent signaling cascade.

For the DV patterning system, the receptor
is Toll, which signals through the NF-κb pathway
and culminates in nuclear accumulation of Dl. Toll
receptor signaling is involved in numerous aspects of
cellular responses across species, but its tissue pat-
terning function appears to be restricted to insects.
For the terminal system, the receptor is Torso, a
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tyrosine kinase, which signals through a highly con-
served MAPK signaling cassette. Graded activation
of receptor tyrosine kinases and MAPK is used
ubiquitously throughout the development of multi-
ple species. Below, we provide a very brief overview
of the steps between localized activation of Torso
to the generation of a gradient of transcriptional
activity that organizes terminal patterning of the
embryo.49

The spatial pattern of Torso occupancy depends
on the localized production of its ligand Trunk, which
is generated in its active form only at the embry-
onic poles.50 Active ligand diffuses in the extracellular
space above the plasma membrane. Ligand diffusion
is interrupted by its binding to Torso, activating the
enzymatic activity of this receptor. Active receptor is
internalized, thus terminating the process of ligand
diffusion. Lateral mobility of Torso along the plasma
membrane is very low.51 Thus, Torso plays a dual
role in the formation of the terminal gradient: it trans-
duces the signal provided by the extracellular ligand
and limits its spatial range.52,53 This situation is com-
monly encountered in the formation of morphogen
gradients in cellular tissues.54

A large number of experimentally characterized
patterns that depend on locally produced extracellular
ligands can be described by models based on two-state
reaction–diffusion systems, where a diffusible particle
can be in two states: diffusible or immobile.55 In the
terminal system, the diffusible particle corresponds
to free active Trunk and the immobile particle
corresponds to Trunk bound to Torso. In general, the
degradation rate constants in the two different states
are different. For example, in the terminal system, it is
believed that ligand is degraded only in the immobile
state (when bound to Torso). Detailed analysis of
gradient formation in two-state reaction–diffusion
systems and cascades of such systems is described
in a number of recent papers.45,55,56

A key step in the terminal patterning process
is the formation of the two-peaked pattern of activ-
ity pattern of MAPK. MAPK phosphorylates several
intracellular substrates, including Cic, which is essen-
tial for the terminal patterning of the embryo. In the
absence of phosphorylation by MAPK, Cic represses
gene expression throughout the embryo. Two of the
genes repressed by Cic are tailless (tll) and huckebein
(hkb). In response to phosphorylation by MAPK, Cic
is degraded. The Cic degradation pattern is graded
and negatively correlated with the pattern of MAPK
activation.57 This graded pattern gives rise to the
localized derepression of tll and hkb. Thus, simi-
lar to the system that forms the Bcd gradient, the
result of Torso signaling is graded distribution of a

transcription factor. In the rest of the review, we dis-
cuss models that can be used to describe how a graded
distribution of transcription factors is converted into
spatial patterns of gene expression.

INTERPRETATION OF MORPHOGEN
GRADIENTS

Local Regulation of Gene Expression
A key issue in the context of morphogen-dependent
patterning is to understand how and why different
genes are expressed in different positions, correspond-
ing to different concentrations of a morphogen.3 As
a rule, the expression of a single gene is regulated
by multiple transcription factors. Thus, to understand
how morphogens control gene expression, we need
to consider the joint effects of multiple regulators,
which may be either dependent or independent on the
morphogen gradient.

To simplify things, we will assume that the
expression rate of a given gene, i.e., the number of new
transcripts generated per unit time, at a given position
within the tissue, can be written as an algebraic
function of local concentrations of transcription
factors. The form of this function depends on the
regulatory region of the gene. Amongst other things,
it depends on the binding sites of specific transcription
factors and the distances between these sites.

Morphogen gradients can control gene ex-
pression both directly and indirectly, through
transcriptional cascades. An archetypal example of
a transcriptional cascade is regulation of the gap and
pair rule genes during Drosophila segmentation. Bcd
directly regulates expression of the gap genes, in the
form of broad domains; the products of these genes
work with Bcd to establish striped expression of the
pair rule genes.58

The expression levels of both direct and indirect
targets of a morphogen are affected by quantitative
manipulations of the morphogen level. The strength of
the effect depends on the number and strength of the
binding sites for the morphogen within the regulatory
sequences of its specific targets. However, this is only
part of the story, because each step within such
a cascade can be regulated by additional, auxiliary
factors that do not depend on the graded signal. These
factors can be either spatially uniform or graded. For
instance, gene expression along the DV axis depends
both on Dl, which is graded, and Zelda (Zld), a
uniformly distributed transcriptional activator.59,60

Direct Effects of Morphogen Gradients
Some of the key aspects of gene regulation by
a combination of graded and uniform signals can

© 2012 Wiley Per iodica ls, Inc.
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spatial pattern of the activity of the regulatory region.

be illustrated by the following model, which can
be viewed as a simplified description of the first
step within a transcriptional cascade. The model
assumes that the expression rate of a gene depends
on the probability of finding its regulatory region
bound by a specific complement of transcription
factors. This type of mathematical description of
transcriptional regulator is called a site occupancy
model.28,34,61–63

Consider a gene controlled by two factors, A
and B, each of which has a single binding site within
a hypothetical regulatory region (Figure 6(a)). The
concentrations of these factors are denoted by CA and
CB. Let us think of CA as the graded concentration of a
morphogen; CB reflects the concentration of auxiliary
signal and it can be either uniform or graded.

The regulatory region can be found in four
different states: one state with both sites empty, two
states with a single site occupied, and one state with
both sites bound by their corresponding transcription
factors. We assume that binding of the morphogen is
a necessary condition for activation of the regulatory
region. This can be realized in two different ways,
when A is bound, either by itself or together with B.
When the binding reactions are in equilibrium, the
probability of finding the regulatory region in either
one of the states necessary for gene activation is

given by

P{A bound} = P{A} + P{A & B}

= CA + CACBω/KB

KA + CA + KACB/KB + CACBω/KB

In this expression, KA and KB are the
corresponding equilibrium-binding constants, which
characterize the binding affinities of A and B to their
respective sites, when taken in isolation. ω is a measure
of cooperativity, which reflects the ability of factor
B to change the binding affinity of A to its site.
Clearly, when ω = 1, P{A bound} = CA/(KA + CA),
which corresponds to the case of no cooperativity.
When ω > 1, the auxiliary factor B can be viewed as
a coactivator that ‘recruits’ factor A to its binding
site.

Let us consider the implications of this model
for the spatial control of gene expression when
A is graded and B is uniform. To make things
specific, the concentration field of CA is described
by a single exponential (Figure 6(b)), which could be
established by processes of reaction and diffusion.
A representative pattern of transcriptional activity is
shown in Figure 6(c). According to the model, this
pattern is affected by changes in the level of the
morphogen (CA) as well as by changes in the strength
of its binding site (KA). Note that the spatial pattern
of transcriptional activity can also be affected by the
uniform factor, through changes in CB, KB, and ω.
Predictions of the model can be used to interpret
the results of recent experiments, which demonstrated
that uniform factors play an important role in gene
regulation, by morphogen gradients.

Our illustrative model can be generalized to
the case when factor B is a repressor and/or when
its spatial distribution is non-uniform. The main
conclusion from analyzing of such models is that
gene regulation by a morphogen can be tuned in a
variety of ways by combinatorial interactions. As a
consequence, several alternative models can explain
the fact that different genes are expressed in dif-
ferent patterns. Observed variation in expression
patterns can stem from differences in the number or
strength of binding factors for the morphogen itself.
Alternatively, they can reflect differential response
to auxiliary signals. This point has been illustrated
by recent studies of gene regulation by the Bcd
gradient.64,65

Dynamic Models of Gene Expression
Before moving on to transcriptional cascades, we need
to set-up a simple dynamic model that describes
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the expression level of one direct target of a spa-
tially graded signal. This model provides a connec-
tion between the dynamics of patterning signals and
spatiotemporal patterns of gene and protein expres-
sion. Solution of this model will be used to discuss
pattern formation by a combination of direct and
indirect effects. We use perhaps the simplest possi-
ble dynamic model of transcriptional regulation. This
model has only two variables, denoted by Cm and Cp,
which correspond to the concentration of mRNA and
protein, respectively, of a gene controlled by a graded
chemical signal.

Most importantly, production of mRNA is
determined by the state of a gene regulatory region. In
the simplest case, it is proportional to the probability
of finding this region in a state favorable for
transcription. For illustrative purposes, we will use a
model with a single site for an activator, whose time-
dependent concentration is denoted by CA(x, t) and
can be found from the models of morphogen gradient
formation. Protein production rate is proportional to
the amount of mRNA. The degradation rates for both
mRNA and protein are assumed to follow first order
kinetics. With these assumptions, the model takes the
following form:

dCm

dt
= G1

CA

KA + CA
− km

degCm

dCp

dt
= G2Cm − kp

degCp.

In these equations, G1 and G2 are the propor-
tionality constants in the simplified descriptions of
transcription and translation, respectively, and KA

is the affinity of a binding site for an activator. If
the rate constant for transcript degradation (km

deg)
greatly exceeds the rate constant for protein degrada-
tion (kp

deg), we can use a steady state approximation
for the transcript level, which leads to a single variable
model for protein concentration:

dCp

dt
= G2G1

km
deg

CA

KA + CA
− kp

degCp.

Because morphogen concentration, CA, is a
function of space and time, solution of this equation
will depend on both x and t. In the rest of this section,
we limit our discussion to steady state solutions,
which correspond to the case when the time scale
of protein degradation is faster than the time scale
of morphogen gradient formation. This leads to the
following expression for the spatial distribution of
protein product of a gene regulated by a morphogen

gradient:

Cp(x, t) ≈ G2G1

km
degkp

deg

CA(x, t)
KA + CA(x, t)

= Cmax
p

CA(x, t)
KA + CA(x, t)

.

Here Cmax
p ≡ G2G1/(km

degkp
deg) is the maximal

possible protein concentration, which is attained
when activator concentration greatly exceeds the
equilibrium-binding constant (CAKA). In this regime,
Cp(x, t) is directly proportional to the probability of
finding the gene regulatory region in a state favorable
for transcription. Under the assumptions above, the
same will hold true for models of more complex
regulatory regions, e.g., those controlled by multiple
activators and repressors.

Formation of Nonmonotonic Patterns
by Incoherent Feedforward Loops
One of the simplest and most commonly encountered
motifs in transcriptional cascades is an incoherent
feedforward loop, a three-node network where an
input (A) activates a gene (B) and its repressor (C).66

This network can convert a morphogen gradient into
a spatially nonmonotonic pattern of gene expression.
To illustrate this point, let us consider a hypothetical
gene regulatory region with two binding sites: one for
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FIGURE 7 | Spatial signal processing by the incoherent feedforward
loop. (a) Possible configurations of a regulatory region controlled by an
activator and repressor. (b) Structure of an incoherent feedforward loop.
(c) Normalized activity of the regulatory region as a function of
morphogen concentration. Model parameters are as follows (see text for
details): K C

A = 0.05,K C
B = 0.01, K B

A = 50, Cmax
B = 35. (d) Normalized

spatial distribution of the morphogen (black) and normalized spatial
distribution of the activity of the regulatory region of gene C (blue).
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an activator, distributed in a gradient, and one for
a repressor, which is induced by the same activator
(Figure 7(a)). We assume that this module is active
when it is bound by an activator and not bound
by a repressor. Furthermore, we assume that binding
reactions are in equilibrium and that binding events of
repressor and activator are independent. With these
assumptions, the probability of finding the region in a
state bound by an activator and no repressor:

P{A bound, B not bound} = P{A}(1 − P{B})

= CA

KC
A + CA

KC
B

KC
B + CB

.

KC
A and KC

B are the equilibrium-binding constants
for repressor and activator within the regulatory
region of gene C. As before, let us assume that
the spatial distribution of CA is established by
an independent process of morphogen gradient
formation, and leads to a given profile, CA(x).

To evaluate the spatial profile of the activity of
the gene regulatory region in our model we need to
find the spatial profile of repressor. This can be done
using a model from the previous subsection, in which
repressor is directly activated through a regulatory
region with a single binding site, whose affinity for an
activator is denoted by KB

A:

CB(x) = Cmax
B

CA

KB
A + CA

.

Substituting this into the expression for
P{A bound, B not bound}, we get a single variable
function of activator concentration. Depending on the
values of model parameters, this function can have
a maximum. For instance, when KB

A is much larger
than the maximal concentration of the activator,
CB(x) ≈ Cmax

B CA/KB
A, this leads to

P{A bound, B not bound}

= CA

KC
A + CA

KC
B

KC
B + Cmax

B CA/KB
A

.

This function has a maximum at CA =√
KC

AKC
BKB

A/Cmax
B . If this concentration falls within

the range of the morphogen gradient, transcriptional
activity of the regulatory region of gene C has a
maximum as a function of position. A representative
example is shown in Figure 7(b). Thus, an incoherent
feedforward loop can convert a spatially monotonic
morphogen gradient into a nonmonotonic pattern of
gene expression. This mechanism is used during the

DV patterning of the embryo, when the expression of
genes needed for neural development is excluded from
the presumptive mesoderm region. In this case, Dl
activates both neuroectoderm-specific genes, such as
sog, and Sna, which represses them in the presumptive
mesoderm (Figure 2(c)).

Formation of Patterns with Sharp
Boundaries: Cooperativity
Regulatory regions of genes commonly have closely
spaced sites for the same transcriptional regulator.
For example, clusters of Bcd and Dl binding sites
are a common feature of multiple genes expressed
in the early fly embryo. This structural feature of
gene regulatory regions can lead to highly cooperative
binding of transcription factors, which can result
from attractive interactions between proteins bound
to adjacent sites. Below, we will use a model with
two adjacent binding sites for a single factor B. When
cooperative effects are strong, the probability to find
this cluster is in a state with at least one molecule of B
is closely approximated by the following function:

P{B bound} = C2
B

K2
B + C2

B

.

This is a particular case of a more general
Hill-type nonlinearity, f (c) = cn/(kn + cn), which
is commonly used in models of transcriptional
regulation. This function is more switch-like than
the hyperbolic dependences used in the models of the
previous sections. A measure of a switch-like behavior
is provided by the fold change of the input that it is
needed to change the output from 10% to 90% of the
maximal value. When n = 1, this requires an 81-fold
increase of the input, almost two orders of magnitude.
On the other hand, for n = 2 the same change can be
generated by only a 9-fold change in c. As the value
of n increases, turning a system from 10 to 90% ‘on’
requires progressively smaller fold-changes of input.

Gene regulatory regions with homotypic binding
sites for cooperatively binding transcription factors
can display an increase in the sharpness of the
transcriptional response to morphogen gradients. A
clear example of this strategy was provided by studies
of Bcd-dependent regulation of hunchback (hb).23

In a number of cases, the emerging patterns change
very abruptly, sometimes over just a couple cells, a
length scale which is considerably less than the length
scale on which the concentration of a morphogen
changes significantly. Explaining such abrupt changes
solely based on a direct response to a morphogen
gradient requires very high values of n, which is
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inconsistent with experimentally measured values that
rarely exceed n = 5. On the other hand, a mechanism
based on a positive feedback loop, which relies on
only modest cooperativity, can generate patterns of
essentially arbitrary sharpness.67

Positive Feedback Circuit: Bistability
To illustrate the patterning function of circuits with
positive feedback loops, we analyze a hypothetical
gene regulatory region with three binding sites for
two activators: one site for the morphogen A and two
sites for factor B, which is the protein product of the
gene controlled by this region. We assume that there
is no cooperativity between factors A and B. On the
other hand, binding of B is highly cooperative and is
described by a Hill function with n = 2. If we assume
that this regulatory region is active when either one
of the factors is bound, the probability of finding the
region in a configuration favorable for transcription
is given by

P{A or B bound} = 1 − (1 − P{A})(1 − P{B})
= P{B} + P{A}(1 − P{B}).

We can use this expression to construct a
dynamical model for the concentration of factor B
(for clarity, we suppress the dependence of CA and CB
on space and time)

dCB

dt
= kB,p

deg

[
Cmax

B

(
C2

B

K2
B + C2

B

+ CA

KA + CA(
1 − C2

B

K2
B + C2

B

))
− CB

]
.

This model has two interesting properties.67

First, the steady state profile of B can change very
abruptly as a function of coordinate. Second, CB can
exhibit persistent responses to transient inputs, e.g., to
morphogen concentrations with pulse-like dynamics.
In other words, the system has memory. Both of these
properties stem from the fact that it has multiple
steady states at zero morphogen concentration. When
CA = 0, the differential equation for CB becomes:

dCB

dt
= kB,p

deg

[
Cmax

B

(
C2

B

K2
B + C2

B

)
− CB

]
. (1)

The number and stability of steady states
in this equation can be determined by analyzing
the intersection of sigmoidal synthesis and linear
degradation terms (Figure 8). When Cmax

B > 2KB, the
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FIGURE 8 | Spatial signal processing by the positive feedback loop.
(a) Possible configurations of a gene regulatory region controlled by
two activators, one of which has a cluster of homotypic binding sites.
(b) Structure of the positive feedback circuit. (c) Geometrical analysis of
steady states and their stability at zero level of morphogen
concentration. A case with a single stable steady state. Model
parameters are as follows (see text for details): Cmax

B = 3, KA = 10,
KB = 2. (d) Geometrical analysis of steady states and their stability at
zero level of morphogen concentration. A case with steady state
multiplicity. Parameters are as in (c), but Cmax

B = 5. (e) Parametric
dependence of steady states on morphogen concentration (CA ). The
‘off’ steady state (blue) disappears beyond critical concentration of the
morphogen. Stable and unstable steady states are shown by solid and
dashed curves, respectively. (f) Discontinuous spatial profile of the
steady state generated by a positive feedback responding to a
morphogen gradient.

curves intersect three times, which means that there
are three distinct concentrations of factor B at which
its synthesis and degradation balance each other. By
analyzing the signs of the time derivative of CB at each
of these concentrations, we see that the intermediate
steady state is unstable (Figure 8(b)) and the others
are stable.

Consider now what happens to each of
these steady states as a function of morphogen
concentration, CA. The ‘off’ state exists only below
a critical value of morphogen concentration, denoted
by CA,crit. At this concentration, the ‘off’ state collides
with the intermediate unstable steady state and both
them disappear. In contrast, the ‘on’ state remains
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stable at all morphogen concentrations, approaching
Cmax

B when CAKA.
This steady state picture is useful in analyzing

the spatial response of an autoregulating circuit to a
morphogen gradient. For simplicity, let us assume that
the gradient is at steady state, given by a monoton-
ically decaying function CA,s(x). If the system starts
in a state with CB = 0 for x, then the steady state
value of CB at a given value of x depends on whether
the morphogen concentration at this location is below
or above the critical concentration, CA,crit. All points
that correspond to morphogen concentrations below
CA,crit will reach the steady state that corresponds to
the ‘off’ state of the positive feedback, in its bistable
regime. At the same time, wherever CA,s(x) > CA,crit,
the system will move to the steady state that is ‘related’
to the ‘on’ state at CA = 0. Because of a discontinuous
change in the steady solution as a function of mor-
phogen concentration, the steady state profile of CB

will exhibit a discontinuity as a function of position.
As a consequence the spatial distribution of CB will
be infinitely sharp.

The same analysis can be used to understand the
ability of the positive feedback system to remember
transient inputs. Consider a system that has reached
a steady state distribution of CB. What happens when
the morphogen concentration is now reduced to zero
throughout the system? Based on analysis of the steady
states with CA = 0, we see that the concentration of
CB at all x located to the right of the value that cor-
responds to CA,crit will relax back to the ‘off’ state
(CB = 0). On the other hand, CB for all x to the left of
this value, will change only slightly, adjusting to the
‘on’ state (Figure 8(c)).

Thus, a positive feedback circuit can convert a
transient signal into a stable pattern of transcriptional
activity. This property is essential for developmen-
tal patterning systems, which are commonly activated
by transient inputs. For instance, the Bcd gradient
is degraded toward the onset of cellularization and
some of the gene expression patterns established by
Bcd are maintained by mechanisms that depend on
positive feedback or dual repressor circuit, which also
supports bistability.24,68 Importantly, similar mecha-
nisms have been recently shown to play essentially the
same roles in vertebrate systems.69,70

CONCLUSION

We reviewed a number of simple models that can be
used as building blocks in the mathematical analysis of
morphogen gradients and their effects on gene expres-
sion. Biological systems necessarily use a combination
of multiple strategies for the formation and inter-
pretation of morphogen gradients.21,33 For example,
understanding even the earliest steps of pattern forma-
tion by the Dl gradient requires simultaneous analysis
of coherent and incoherent feedforward loops and
positive autoregulation.34 As another example, gradi-
ent formation in the terminal system relies on a cascade
of reaction–diffusion systems, the output of which is
interpreted by gene regulatory regions that respond
to a combination of graded and uniform signals.56,71

The differential contributions of multiple layers of
regulation in such complex systems can be explored
using the models reviewed in the sections above. Spe-
cific examples of this approach can be found in recent
publications.24,25,28,37,38,63,71,72

We focused on patterns in one spatial dimension.
However, it is clear that a combination of multiple
graded signals, distributed along different axes of the
tissue and acting through gene regulatory regions sim-
ilar to ones discussed above can generate a variety
of two-dimensional patterns.73,74 Patterns with mul-
tiple peaks, such as the striped expression patterns of
the pair rule genes, can be described using models in
which a single gene is controlled by multiple regulatory
regions, which respond to different combinations of
transcription factors. As a first approximation, these
regions can be modelled independently, similar to the
approaches outlined in this review.75

To summarize, the emergence of patterns of
increasing complexity can be understood based on
simple physicochemical models. Connecting these
models to experimentally observed patterns requires
a quantitative analysis of inductive signals and tran-
scriptional responses as a function of time, space, and
genetic background. Supported by quantitative experi-
ments, mechanism-based, quantitative models provide
unique insights into the robustness and evolution of
developmental pattern formation processes. The early
Drosophila embryo, with its simple anatomy, and a
wealth of available and rapidly evolving genetic and
imaging tools provides a fertile ground for testing this
interdisciplinary approach.
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